MI image registration using prior knowledge

نویسندگان

  • W. Jacquet
  • P. de Groen
چکیده

Subtraction of aligned images is a means to assess changes in a wide variety of clinical applications. In this paper we explore the information theoretical origin of Mutual Information (MI), which is based on Shannon's entropy. However, the interpretation of standard MI registration as a communication channel suggests that MI is too restrictive a criterion. In this paper the concept of Mutual Information (MI) is extended to (Normalized) Focussed Mutual Information (FMI) to incorporate prior knowledge to overcome some shortcomings of MI. We use this to develop new methodologies to successfully address specific registration problems, the follow-up of dental restorations, cephalometry, and the monitoring of implants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Multi-modal Image Registration Based on Prior Joint Intensity Distributions and Minimization of Kullback-Leibler Distance

Robust registration is essential for image-guided therapy as well as structural and functional analysis. In this work, we present a new method that can give superior robustness in multi-modal image registration. This method is based on the a priori knowledge of the joint intensity distributions between image pairs at different image resolutions and the Kullback-Leibler distance (KLD) similarity...

متن کامل

Incorporating Prior Knowledge on Class Probabilities into Local Similarity Measures for Intermodality Image Registration

We present a methodology for incorporating prior knowledge on class probabilities into the registration process. By using knowledge from the imaging modality, pre-segmentations, and/or probabilistic atlases, we construct vectors of class probabilities for each image voxel. By defining new image similarity measures for distribution-valued images, we show how the class probability images can be n...

متن کامل

Artifacts reduction in mutual information-based image registration using prior information

Mutual information (MI) is currently the most popular match metric in handling the registration problem for multi modality images. However, interpolation artifacts impose deteriorating effects to the accuracy and robustness of MI-based methods. This paper analyzes the generation mechanism of the artifacts inherent in partial volume interpolation (PVI) and shows that the mutual information resul...

متن کامل

Robust Fuzzy Content Based Regularization Technique in Super Resolution Imaging

Super-resolution (SR) aims to overcome the ill-posed conditions of image acquisition. SR facilitates scene recognition from low-resolution image(s). Generally assumes that high and low resolution images share similar intrinsic geometries. Various approaches have tried to aggregate the informative details of multiple low-resolution images into a high-resolution one. In this paper, we present a n...

متن کامل

A Novel Subsampling Method for 3D Multimodality Medical Image Registration Based on Mutual Information

Mutual information (MI) is a widely used similarity metric for multimodality image registration. However, it involves an extremely high computational time especially when it is applied to volume images. Moreover, its robustness is affected by existence of local maxima. The multi-resolution pyramid approaches have been proposed to speed up the registration process and increase the accuracy of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/0705.3593  شماره 

صفحات  -

تاریخ انتشار 2007